to ever more sophisticated imaging techniques. Just as X-ray technology allows us to peer inside the body, neuroimaging techniques allow us glimpses of the working brain. Each type of imaging uses a different technique and each has its own advantages and disadvantages.

Positron Emission Tomography (PET) records metabolic activity in the brain by detecting the amount of radioactive substances, which are injected into a person’s bloodstream, the brain is consuming. This technique allows us to see how much an individual uses a particular part of the brain while at rest, or not performing a task. Another technique, known as **Functional Magnetic Resonance Imaging (fMRI)** relies on blood flow. This method measures changes in the levels of naturally occurring oxygen in the blood. As a brain region becomes active, it requires more oxygen. This technique measures brain activity based on this increase oxygen level. This means fMRI does not require a foreign substance to be injected into the body. Both PET and fMRI scans have poor **temporal resolution**, meaning that they cannot tell us exactly when brain activity occurred. This is because it takes several seconds for blood to arrive at a portion of the brain working on a task.

One imaging technique that has better temporal resolution is **Electroencephalography (EEG)**, which measures electrical brain activity instead of blood flow. Electrodes are place on the scalp of participants and they are nearly instantaneous in picking up electrical activity. Because this activity could be coming from any portion of the brain, however, EEG is known to have poor **spatial resolution**, meaning that it is not accurate with regards to specific location.

Above: A PET scan - Below: An fMRI scan (Image: Erik1980)

An EEG cap (Image: Chris Hope)